What about transfers and effects of edaphic pollutants, on the restoration of peatlands?

G. CHIAPUSIO, P. BINET, B. DAVID

Symposium on may 15-16 th, 2017, "Retours d'expériences de restauration et de valorisation de tourbières de plaine".

Current data on pesticides

- France is presently the first European consumer of plants protection products, with 100 000 T/year used = 33 % of herbicides + 56 % of fongicides.
- Consequences: health risk for farmers, risks on terrestrial and aquatic ecosystems and on the development of resistant organisms.
- Key role of soil: main sink for pesticides, before any transfer in water for hydrosoluble compounds or in vegetation.

Which transfers from edaphic pollutants?

Water

GW: Ground Water

Dn: Drainage,

WR: Water Runoff

Soil

Em:Emission

from soil

Vegetation

BA:

BioAccumulation, phytoremedialtion

Preliminary study of pesticides in the peatland of Chautagne

- ▶ 11 molecules recovered in the water of drains (CEN, Savoie):
- Triazines → atrazine, terbuthylazine (forbidden sale)
- Chloroacétamides → acetochlor, metolachlor (*forbidden sale*)
- Benzoxazines → benoxacor
- Diazines → bentazone
- Acides benzoïques → dicamba
- Dérivés d'acides aminés → glyphosate
- Tricétones → mesotrione, sulcotrione
- Chloroacétamides → (forbidden sale),
- Sulfonylurées → nicosulfuron

Goal of the preliminary study

 Work done by MSc Students at UFC, Montbéliard (Supervisors G Chiapusio, P Binet) : Aline Grosclaude, Mathieu Petitjean, Laura Schmitt

1 – synthesis of the physicochemical properties of the 11 recovered pesticides in water,

2- preliminary results of soil contamination by pesticides, with one sampling date (march 2016).

Focus on Atrazine and Metolachlor

Soil and sediments sampling

Sampling: march 2016

- ✓ ASE extraction (hexane/acetone)
- ✓ GC/MS quantification

Discussion

- Atrazine (6µg/kg): metabolites (products of Atrazine degradation)?
- Metolachlor: maximum recovered at 10 cm (700 µg/kg) showing a slow adsorption in soils, transfer into water.
- Observed gradient North / South : which differences ? acidification ? organic matter ? clay ? water ?

In soils, pesticides are linked to organic matter and clay. They are transformed/detoxified by microorganisms or found as bound residues (non extractable residues).

Transfer into the Vegetation

Aerial organs (+%)

Bound residues also found in plants!

Differences between A. monocotyledons and A. dicotyledons

depend on soil characteristics

- ✓ Different physiological impacts on the natural vegetation
- ✓ Natural grassland can increase microbial pesticide degradation

Which transfers from edaphic pollutants?

Soil

Em: Emission from soil

Water

GW: Ground Water

Dn: Drainage

WR: Water Runoff

Vegetation

BA:

BioAccumulation, phytoremedialtion

How?

Methodology for estimation of pesticides flows, transferred from soil to the atmosphere, on different sites (Savoie – France).

Mass balance of pollutants: PAH, PCB, dioxines, furanes, metals and pesticides.

At the soil-air interface : case of pesticides

Presence of pesticides in the atmosphere (rural & urban) => Are soils a secondary source of such persistants polluants? Is there a long range atmospheric transport, namely «Grasshopper» effect?

Gas phase

Particulate phase

 Σ 5 Pesticides in soil = 25 μ g/kg dry soil

Total (gas + particles) pesticides flows :

 \rightarrow Alachlore = 2,2 ng/m²/h

0,5 year

Métribuzine = $0.7 \text{ ng/m}^2/h$

1,1 year

Métolachlore = 0,1 ng/m²/h

7,8 years

Duration time:

complete volatilization by emission...only!

How to study these processes?

- Very few results on peatlands in the literature.
- Models used :
 - Partition coefficients :
 - $Arr K_{soil/water} = C_{soil}/C_{water}$
 - $K_{soil}/V_{vegetation} = C_{soil}/C_{vegetation}$
 - $K_{\text{soil/air}} = C_{\text{soil}}/C_{\text{air}}$ vs K_{ow} , f_{oc} , K_{H} , K_{OA} ...
 - Fugacity (f): trend of a chemical to leave its original medium (Lewis 1901, MacKay 2001).

At low concentration : $C_i = Z_i$ f_i Cte, whatever the medium

Model SOIL

Model LEVEL

Scientific issues

- Alcaline peatlands: high amount of organic matter where pollutants are expected to be highly sequestered. In which amount? what is the turn over/remobilisation?
- With time, is the peatland a source or a sink for pollutants?
- Restoration: What will be the biogeochemical consequences of a rise of water on the peatland?
 - Mechanisms of transfer and transport of pesticides: solubilisation, adsorption, volatilization?
 - Mechanisms of bioaccumulation by natural vegetation and responses of microbial communities?
- Scientific studies in collaboration with local managers are necessary in order to propose fundamental and practical useful indicators.
- Chautagne is a unique model site!

